Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Skin Lesion Segmentation Improved by Transformer-based Networks with Inter-scale Dependency Modeling (2310.13604v1)

Published 20 Oct 2023 in eess.IV, cs.AI, and cs.CV

Abstract: Melanoma, a dangerous type of skin cancer resulting from abnormal skin cell growth, can be treated if detected early. Various approaches using Fully Convolutional Networks (FCNs) have been proposed, with the U-Net architecture being prominent To aid in its diagnosis through automatic skin lesion segmentation. However, the symmetrical U-Net model's reliance on convolutional operations hinders its ability to capture long-range dependencies crucial for accurate medical image segmentation. Several Transformer-based U-Net topologies have recently been created to overcome this limitation by replacing CNN blocks with different Transformer modules to capture local and global representations. Furthermore, the U-shaped structure is hampered by semantic gaps between the encoder and decoder. This study intends to increase the network's feature re-usability by carefully building the skip connection path. Integrating an already calculated attention affinity within the skip connection path improves the typical concatenation process utilized in the conventional skip connection path. As a result, we propose a U-shaped hierarchical Transformer-based structure for skin lesion segmentation and an Inter-scale Context Fusion (ISCF) method that uses attention correlations in each stage of the encoder to adaptively combine the contexts from each stage to mitigate semantic gaps. The findings from two skin lesion segmentation benchmarks support the ISCF module's applicability and effectiveness. The code is publicly available at \url{https://github.com/saniaesk/skin-lesion-segmentation}

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.