Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BRFL: A Blockchain-based Byzantine-Robust Federated Learning Model (2310.13403v1)

Published 20 Oct 2023 in cs.LG

Abstract: With the increasing importance of machine learning, the privacy and security of training data have become critical. Federated learning, which stores data in distributed nodes and shares only model parameters, has gained significant attention for addressing this concern. However, a challenge arises in federated learning due to the Byzantine Attack Problem, where malicious local models can compromise the global model's performance during aggregation. This article proposes the Blockchain-based Byzantine-Robust Federated Learning (BRLF) model that combines federated learning with blockchain technology. This integration enables traceability of malicious models and provides incentives for locally trained clients. Our approach involves selecting the aggregation node based on Pearson's correlation coefficient, and we perform spectral clustering and calculate the average gradient within each cluster, validating its accuracy using local dataset of the aggregation nodes. Experimental results on public datasets demonstrate the superior byzantine robustness of our secure aggregation algorithm compared to other baseline byzantine robust aggregation methods, and proved our proposed model effectiveness in addressing the resource consumption problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in International Conference on Artificial Intelligence and Statistics, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:14955348
  2. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, pp. 50–60, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:201126242
  3. Y. Qu, M. P. Uddin, C. Gan, Y. Xiang, L. Gao, and J. Yearwood, “Blockchain-enabled federated learning: A survey,” ACM Computing Surveys, vol. 55, pp. 1 – 35, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:237599179
  4. Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in adversarial settings: Byzantine gradient descent,” in PERV, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:58534983
  5. D. Cao, S. Chang, Z. Lin, G. Liu, and D. Sun, “Understanding distributed poisoning attack in federated learning,” 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 233–239, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:210992177
  6. Y. Khazbak, T. Tan, and G. Cao, “Mlguard: Mitigating poisoning attacks in privacy preserving distributed collaborative learning,” 2020 29th International Conference on Computer Communications and Networks (ICCCN), pp. 1–9, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:218594342
  7. C. Fung, C. J. M. Yoon, and I. Beschastnikh, “The limitations of federated learning in sybil settings,” in International Symposium on Recent Advances in Intrusion Detection, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221542915
  8. Y. Wang, T. Zhu, W. Chang, S. Shen, and W. Ren, “Model poisoning defense on federated learning: A validation based approach,” in International Conference on Network and System Security, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:230716867
  9. J. Tan, Y.-C. Liang, N. C. Luong, and D. T. Niyato, “Toward smart security enhancement of federated learning networks,” IEEE Network, vol. 35, pp. 340–347, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221173074
  10. Z. Chen, P. Tian, W. Liao, and W. Yu, “Zero knowledge clustering based adversarial mitigation in heterogeneous federated learning,” IEEE Transactions on Network Science and Engineering, vol. 8, pp. 1070–1083, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:226622886
  11. X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu, “Flchain: A blockchain for auditable federated learning with trust and incentive,” 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), pp. 151–159, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:208211278
  12. Z. Lin, Z. Wu, J. Zhu, and J. Huang, “A blockchain-based decentralized federated learning framework with dual-committees consensus,” Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:257508657
  13. A. Islam and S. Y. K. Shin, “A blockchain-based privacy sensitive data acquisition scheme during pandemic through the facilitation of federated learning,” 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), pp. 83–87, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:253880939
  14. Y. He, K. Huang, G. Zhang, F. R. Yu, J. Chen, and J. Li, “Bift: A blockchain-based federated learning system for connected and autonomous vehicles,” IEEE Internet of Things Journal, vol. 9, pp. 12 311–12 322, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:245154138
  15. M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti: A blockchain system for private and secure federated learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, pp. 1513–1525, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:232042257
  16. H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and Y. Zhang, “Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 6073–6084, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:235589750
  17. H. Chen, S. A. Asif, J. Park, C.-C. Shen, and M. Bennis, “Robust blockchained federated learning with model validation and proof-of-stake inspired consensus,” ArXiv, vol. abs/2101.03300, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:231573565
  18. K. Yuan, Z. Wu, and Q. Ling, “A byzantine-resilient dual subgradient method for vertical federated learning,” ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4273–4277, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:249436560
  19. J.-H. Chen, M.-R. Chen, G. Zeng, and J. Weng, “Bdfl: A byzantine-fault-tolerance decentralized federated learning method for autonomous vehicle,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 8639–8652, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:237598030
  20. W. Bao and J. He, “Boba: Byzantine-robust federated learning with label skewness,” ArXiv, vol. abs/2208.12932, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:251903346
  21. C. Chen, L. Lyu, Y. Liu, F. Wu, C. Chen, and G. Chen, “Byzantine-resilient federated learning via gradient memorization,” 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:246973253
  22. R. Jin, J. Hu, G. Min, and H. Lin, “Byzantine-robust and efficient federated learning for the internet of things,” IEEE Internet of Things Magazine, vol. 5, pp. 114–118, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:248698720
  23. M. Li, D. Xiao, J. Liang, and H. Huang, “Communication-efficient and byzantine-robust differentially private federated learning,” IEEE Communications Letters, vol. 26, pp. 1725–1729, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:249351301
  24. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. [Online]. Available: https://api.semanticscholar.org/CorpusID:236214795
  25. H. Xiong, M. Chen, C. Wu, Y. Zhao, and W. Yi, “Research on progress of blockchain consensus algorithm: A review on recent progress of blockchain consensus algorithms,” Future Internet, vol. 14, p. 47, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:246434512
  26. K. Farooq, H. J. Syed, S. O. Alqahtani, W. A. E. Nagmeldin, A. O. Ibrahim, and A. Gani, “Blockchain federated learning for in-home health monitoring,” Electronics, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:255245541
  27. S. Aich, N. K. Sinai, S. Kumar, M. Ali, Y. R. Choi, M.-I. Joo, and H.-C. Kim, “Protecting personal healthcare record using blockchain & federated learning technologies,” 2021 23rd International Conference on Advanced Communication Technology (ICACT), pp. 109–112, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:232235893
  28. W. Jiao, H. Zhao, P. Feng, and Q. Chen, “A blockchain federated learning scheme based on personalized differential privacy and reputation mechanisms,” 2023 4th International Conference on Information Science, Parallel and Distributed Systems (ISPDS), pp. 630–635, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:261563809
  29. K. Pearson, “Contributions to the mathematical theory of evolution,” Proceedings of the Royal Society of London, vol. 54, pp. 329 – 333. [Online]. Available: https://api.semanticscholar.org/CorpusID:121108273
  30. U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, pp. 395–416, 2007. [Online]. Available: https://api.semanticscholar.org/CorpusID:3264198
  31. L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “Rsa : Byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets,” 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:262982727
  32. P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with adversaries: Byzantine tolerant gradient descent,” in Neural Information Processing Systems, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:28527385
  33. D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-robust distributed learning: Towards optimal statistical rates,” in International Conference on Machine Learning, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:3708326
  34. S. Li, E. C. H. Ngai, and T. Voigt, “An experimental study of byzantine-robust aggregation schemes in federated learning,” ArXiv, vol. abs/2302.07173, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:256129862
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Li (1142 papers)
  2. Chunhe Xia (9 papers)
  3. Chang Li (60 papers)
  4. Tianbo Wang (16 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com