Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Computational Complexities of Complex-valued Neural Networks (2310.13075v1)

Published 19 Oct 2023 in cs.NE, cs.LG, and eess.SP

Abstract: Complex-valued neural networks (CVNNs) are nonlinear filters used in the digital signal processing of complex-domain data. Compared with real-valued neural networks~(RVNNs), CVNNs can directly handle complex-valued input and output signals due to their complex domain parameters and activation functions. With the trend toward low-power systems, computational complexity analysis has become essential for measuring an algorithm's power consumption. Therefore, this paper presents both the quantitative and asymptotic computational complexities of CVNNs. This is a crucial tool in deciding which algorithm to implement. The mathematical operations are described in terms of the number of real-valued multiplications, as these are the most demanding operations. To determine which CVNN can be implemented in a low-power system, quantitative computational complexities can be used to accurately estimate the number of floating-point operations. We have also investigated the computational complexities of CVNNs discussed in some studies presented in the literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.