Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generative Marginalization Models (2310.12920v2)

Published 19 Oct 2023 in cs.LG and cs.AI

Abstract: We introduce marginalization models (MAMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling by explicitly modeling all induced marginal distributions. Marginalization models enable fast approximation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of arbitrary marginal inference models, such as any-order autoregressive models. MAMs also address the scalability bottleneck encountered in training any-order generative models for high-dimensional problems under the context of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized log-probability function such as energy or reward function). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including images, text, physical systems, and molecules, for maximum likelihood and energy-based training settings. MAMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MAMs enable any-order generative modeling of high-dimensional problems beyond the scale of previous methods. Code is available at https://github.com/PrincetonLIPS/MaM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: