Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic Average Gradient : A Simple Empirical Investigation (2310.12771v1)

Published 27 Jul 2023 in cs.LG and math.OC

Abstract: Despite the recent growth of theoretical studies and empirical successes of neural networks, gradient backpropagation is still the most widely used algorithm for training such networks. On the one hand, we have deterministic or full gradient (FG) approaches that have a cost proportional to the amount of training data used but have a linear convergence rate, and on the other hand, stochastic gradient (SG) methods that have a cost independent of the size of the dataset, but have a less optimal convergence rate than the determinist approaches. To combine the cost of the stochastic approach with the convergence rate of the deterministic approach, a stochastic average gradient (SAG) has been proposed. SAG is a method for optimizing the sum of a finite number of smooth convex functions. Like SG methods, the SAG method's iteration cost is independent of the number of terms in the sum. In this work, we propose to compare SAG to some standard optimizers used in machine learning. SAG converges faster than other optimizers on simple toy problems and performs better than many other optimizers on simple machine learning problems. We also propose a combination of SAG with the momentum algorithm and Adam. These combinations allow empirically higher speed and obtain better performance than the other methods, especially when the landscape of the function to optimize presents obstacles or is ill-conditioned.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.