Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generalized quantum data-syndrome codes and belief propagation decoding for phenomenological noise (2310.12682v2)

Published 19 Oct 2023 in quant-ph, cs.IT, and math.IT

Abstract: Quantum stabilizer codes often struggle with syndrome errors due to measurement imperfections. Typically, multiple rounds of syndrome extraction are employed to ensure reliable error information. In this paper, we consider phenomenological decoding problems, where data qubit errors may occur between extractions, and each measurement can be faulty. We introduce generalized quantum data-syndrome codes along with a generalized check matrix that integrates both quaternary and binary alphabets to represent diverse error sources. This results in a Tanner graph with mixed variable nodes, enabling the design of belief propagation (BP) decoding algorithms that effectively handle phenomenological errors. Importantly, our BP decoders are applicable to general sparse quantum codes. Through simulations, we achieve an error threshold of more than 3\% for quantum memory protected by rotated toric codes, using solely BP without post-processing. Our results indicate that $d$ rounds of syndrome extraction are sufficient for a toric code of distance $d$. We observe that at high error rates, fewer rounds of syndrome extraction tend to perform better, while more rounds improve performance at lower error rates. Additionally, we propose a method to construct effective redundant stabilizer checks for single-shot error correction. Our simulations show that BP decoding remains highly effective even with a high syndrome error rate.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube