Emergent Mind

Abstract

Bayesian optimization (BO) is widely used for black-box optimization problems, and have been shown to perform well in various real-world tasks. However, most of the existing BO methods aim to learn the optimal solution, which may become infeasible when the parameter space is extremely large or the problem is time-sensitive. In these contexts, switching to a satisficing solution that requires less information can result in better performance. In this work, we focus on time-sensitive black-box optimization problems and propose satisficing Thompson sampling-based parallel Bayesian optimization (STS-PBO) approaches, including synchronous and asynchronous versions. We shift the target from an optimal solution to a satisficing solution that is easier to learn. The rate-distortion theory is introduced to construct a loss function that balances the amount of information that needs to be learned with sub-optimality, and the Blahut-Arimoto algorithm is adopted to compute the target solution that reaches the minimum information rate under the distortion limit at each step. Both discounted and undiscounted Bayesian cumulative regret bounds are theoretically derived for the proposed STS-PBO approaches. The effectiveness of the proposed methods is demonstrated on a fast-charging design problem of Lithium-ion batteries. The results are accordant with theoretical analyses, and show that our STS-PBO methods outperform both sequential counterparts and parallel BO with traditional Thompson sampling in both synchronous and asynchronous settings.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.