Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The weight enumerator polynomials of the lifted codes of the projective Solomon-Stiffler codes (2310.12511v1)

Published 19 Oct 2023 in cs.IT and math.IT

Abstract: Determining the weight distribution of a code is an old and fundamental topic in coding theory that has been thoroughly studied. In 1977, Helleseth, Kl{\o}ve, and Mykkeltveit presented a weight enumerator polynomial of the lifted code over $\mathbb{F}_{q\ell}$ of a $q$-ary linear code with significant combinatorial properties, which can determine the support weight distribution of this linear code. The Solomon-Stiffler codes are a family of famous Griesmer codes, which were proposed by Solomon and Stiffler in 1965. In this paper, we determine the weight enumerator polynomials of the lifted codes of the projective Solomon-Stiffler codes using some combinatorial properties of subspaces. As a result, we determine the support weight distributions of the projective Solomon-Stiffler codes. In particular, we determine the weight hierarchies of the projective Solomon-Stiffler codes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.