Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Simpler Sorting Networks and Monotone Circuits for Majority (2310.12270v1)

Published 18 Oct 2023 in cs.CC and cs.DS

Abstract: In this paper, we study the problem of computing the majority function by low-depth monotone circuits and a related problem of constructing low-depth sorting networks. We consider both the classical setting with elementary operations of arity $2$ and the generalized setting with operations of arity $k$, where $k$ is a parameter. For both problems and both settings, there are various constructions known, the minimal known depth being logarithmic. However, there is currently no known construction that simultaneously achieves sub-log-squared depth, effective constructability, simplicity, and has a potential to be used in practice. In this paper we make progress towards resolution of this problem. For computing majority by standard monotone circuits (gates of arity 2) we provide an explicit monotone circuit of depth $O(\log_2{5/3} n)$. The construction is a combination of several known and not too complicated ideas. For arbitrary arity of gates $k$ we provide a new sorting network architecture inspired by representation of inputs as a high-dimensional cube. As a result we provide a simple construction that improves previous upper bound of $4 \log_k2 n$ to $2 \log_k2 n$. We prove the similar bound for the depth of the circuit computing majority of $n$ bits consisting of gates computing majority of $k$ bits. Note, that for both problems there is an explicit construction of depth $O(\log_k n)$ known, but the construction is complicated and the constant hidden in $O$-notation is huge.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.