Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

On the Benefit of Generative Foundation Models for Human Activity Recognition (2310.12085v1)

Published 18 Oct 2023 in cs.CV and cs.CL

Abstract: In human activity recognition (HAR), the limited availability of annotated data presents a significant challenge. Drawing inspiration from the latest advancements in generative AI, including LLMs and motion synthesis models, we believe that generative AI can address this data scarcity by autonomously generating virtual IMU data from text descriptions. Beyond this, we spotlight several promising research pathways that could benefit from generative AI for the community, including the generating benchmark datasets, the development of foundational models specific to HAR, the exploration of hierarchical structures within HAR, breaking down complex activities, and applications in health sensing and activity summarization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.