Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Decision-based Black-box Attacks on Face Forgery Detection (2310.12017v1)

Published 18 Oct 2023 in cs.CV and cs.CY

Abstract: Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy. Many intelligent systems, such as electronic payment and identity verification, rely on face forgery detection. Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples. Meanwhile, existing attacks rely on network architectures or training datasets instead of the predicted labels, which leads to a gap in attacking deployed applications. To narrow this gap, we first explore the decision-based attacks on face forgery detection. However, applying existing decision-based attacks directly suffers from perturbation initialization failure and low image quality. First, we propose cross-task perturbation to handle initialization failures by utilizing the high correlation of face features on different tasks. Then, inspired by using frequency cues by face forgery detection, we propose the frequency decision-based attack. We add perturbations in the frequency domain and then constrain the visual quality in the spatial domain. Finally, extensive experiments demonstrate that our method achieves state-of-the-art attack performance on FaceForensics++, CelebDF, and industrial APIs, with high query efficiency and guaranteed image quality. Further, the fake faces by our method can pass face forgery detection and face recognition, which exposes the security problems of face forgery detectors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.