Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Decentralized Gradient-Free Methods for Stochastic Non-Smooth Non-Convex Optimization (2310.11973v2)

Published 18 Oct 2023 in math.OC and cs.DC

Abstract: We consider decentralized gradient-free optimization of minimizing Lipschitz continuous functions that satisfy neither smoothness nor convexity assumption. We propose two novel gradient-free algorithms, the Decentralized Gradient-Free Method (DGFM) and its variant, the Decentralized Gradient-Free Method$+$ (DGFM${+}$). Based on the techniques of randomized smoothing and gradient tracking, DGFM requires the computation of the zeroth-order oracle of a single sample in each iteration, making it less demanding in terms of computational resources for individual computing nodes. Theoretically, DGFM achieves a complexity of $\mathcal O(d{3/2}\delta{-1}\varepsilon {-4})$ for obtaining an $(\delta,\varepsilon)$-Goldstein stationary point. DGFM${+}$, an advanced version of DGFM, incorporates variance reduction to further improve the convergence behavior. It samples a mini-batch at each iteration and periodically draws a larger batch of data, which improves the complexity to $\mathcal O(d{3/2}\delta{-1} \varepsilon{-3})$. Moreover, experimental results underscore the empirical advantages of our proposed algorithms when applied to real-world datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: