Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SQ Lower Bounds for Learning Mixtures of Linear Classifiers (2310.11876v1)

Published 18 Oct 2023 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study the problem of learning mixtures of linear classifiers under Gaussian covariates. Given sample access to a mixture of $r$ distributions on $\mathbb{R}n$ of the form $(\mathbf{x},y_{\ell})$, $\ell\in [r]$, where $\mathbf{x}\sim\mathcal{N}(0,\mathbf{I}n)$ and $y\ell=\mathrm{sign}(\langle\mathbf{v}\ell,\mathbf{x}\rangle)$ for an unknown unit vector $\mathbf{v}\ell$, the goal is to learn the underlying distribution in total variation distance. Our main result is a Statistical Query (SQ) lower bound suggesting that known algorithms for this problem are essentially best possible, even for the special case of uniform mixtures. In particular, we show that the complexity of any SQ algorithm for the problem is $n{\mathrm{poly}(1/\Delta) \log(r)}$, where $\Delta$ is a lower bound on the pairwise $\ell_2$-separation between the $\mathbf{v}_\ell$'s. The key technical ingredient underlying our result is a new construction of spherical designs that may be of independent interest.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube