Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DBDNet:Partial-to-Partial Point Cloud Registration with Dual Branches Decoupling (2310.11733v1)

Published 18 Oct 2023 in cs.CV

Abstract: Point cloud registration plays a crucial role in various computer vision tasks, and usually demands the resolution of partial overlap registration in practice. Most existing methods perform a serial calculation of rotation and translation, while jointly predicting overlap during registration, this coupling tends to degenerate the registration performance. In this paper, we propose an effective registration method with dual branches decoupling for partial-to-partial registration, dubbed as DBDNet. Specifically, we introduce a dual branches structure to eliminate mutual interference error between rotation and translation by separately creating two individual correspondence matrices. For partial-to-partial registration, we consider overlap prediction as a preordering task before the registration procedure. Accordingly, we present an overlap predictor that benefits from explicit feature interaction, which is achieved by the powerful attention mechanism to accurately predict pointwise masks. Furthermore, we design a multi-resolution feature extraction network to capture both local and global patterns thus enhancing both overlap prediction and registration module. Experimental results on both synthetic and real datasets validate the effectiveness of our proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. E. Arnold, S. Mozaffari, and M. Dianati, “Fast and robust registration of partially overlapping point clouds,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1502–1509, 2021.
  2. P. Zhou, R. Peng, M. Xu, V. Wu, and D. Navarro-Alarcon, “Path planning with automatic seam extraction over point cloud models for robotic arc welding,” IEEE robotics and automation letters, vol. 6, no. 3, pp. 5002–5009, 2021.
  3. R. T. Azuma, “A survey of augmented reality,” Presence: teleoperators & virtual environments, vol. 6, no. 4, pp. 355–385, 1997.
  4. P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256, 1992. [Online]. Available: https://doi.org/10.1109/34.121791
  5. A. Censi, “An icp variant using a point-to-line metric,” in 2008 IEEE International Conference on Robotics and Automation.   Ieee, 2008, pp. 19–25.
  6. J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-icp: A globally optimal solution to 3d icp point-set registration,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 11, pp. 2241–2254, 2015.
  7. Y. Wang and J. M. Solomon, “Deep closest point: Learning representations for point cloud registration,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 3523–3532.
  8. ——, “Prnet: Self-supervised learning for partial-to-partial registration,” Advances in neural information processing systems, vol. 32, 2019.
  9. Z. J. Yew and G. H. Lee, “Rpm-net: Robust point matching using learned features,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 824–11 833.
  10. Z. Qin, H. Yu, C. Wang, Y. Guo, Y. Peng, and K. Xu, “Geometric transformer for fast and robust point cloud registration,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 11 143–11 152.
  11. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  12. X. Huang, W. Qu, Y. Zuo, Y. Fang, and X. Zhao, “Gmf: General multimodal fusion framework for correspondence outlier rejection,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 12 585–12 592, 2022.
  13. Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “Pointnetlk: Robust & efficient point cloud registration using pointnet,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 7163–7172.
  14. X. Huang, G. Mei, and J. Zhang, “Feature-metric registration: A fast semi-supervised approach for robust point cloud registration without correspondences,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 366–11 374.
  15. Y. Wang, C. Yan, Y. Feng, S. Du, Q. Dai, and Y. Gao, “Storm: Structure-based overlap matching for partial point cloud registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 1135–1149, 2022.
  16. H. Xu, S. Liu, G. Wang, G. Liu, and B. Zeng, “Omnet: Learning overlapping mask for partial-to-partial point cloud registration,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 3132–3141.
  17. S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, and K. Schindler, “Predator: Registration of 3d point clouds with low overlap,” in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2021, pp. 4267–4276.
  18. Z. Chen, F. Yang, and W. Tao, “Detarnet: Decoupling translation and rotation by siamese network for point cloud registration,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 401–409.
  19. P. H. Schönemann, “A generalized solution of the orthogonal procrustes problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.
  20. M. W. Walker, L. Shao, and R. A. Volz, “Estimating 3-d location parameters using dual number quaternions,” CVGIP: image understanding, vol. 54, no. 3, pp. 358–367, 1991.
  21. J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang et al., “Deep high-resolution representation learning for visual recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 10, pp. 3349–3364, 2020.
  22. V. Sarode, A. Dhagat, R. A. Srivatsan, N. Zevallos, S. Lucey, and H. Choset, “Masknet: A fully-convolutional network to estimate inlier points,” in 2020 International Conference on 3D Vision (3DV).   IEEE, 2020, pp. 1029–1038.
  23. Z. J. Yew and G. H. Lee, “Regtr: End-to-end point cloud correspondences with transformers,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 6677–6686.
  24. J. Xu, Y. Zhang, Y. Zou, and P. X. Liu, “Point cloud registration with zero overlap rate and negative overlap rate,” IEEE Robotics and Automation Letters, 2023.
  25. G. Mei, H. Tang, X. Huang, W. Wang, J. Liu, J. Zhang, L. Van Gool, and Q. Wu, “Unsupervised deep probabilistic approach for partial point cloud registration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 13 611–13 620.
  26. Q. M. Thomas, O. Wasenmüller, and D. Stricker, “Delio: Decoupled lidar odometry,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2019, pp. 1549–1556.
  27. H. Xu, N. Ye, G. Liu, B. Zeng, and S. Liu, “Finet: Dual branches feature interaction for partial-to-partial point cloud registration,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 3, 2022, pp. 2848–2856.
  28. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660.
  29. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” Advances in neural information processing systems, vol. 30, 2017.
  30. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” ACM Transactions on Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.
  31. W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point clouds,” in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2019, pp. 9621–9630.
  32. H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas, “Kpconv: Flexible and deformable convolution for point clouds,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6411–6420.
  33. H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 16 259–16 268.
  34. X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design and local geometry in point cloud: A simple residual MLP framework,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.   OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=3Pbra-_u76D
  35. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
  36. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  37. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.
  38. Y. Wu, Y. Zhang, X. Fan, M. Gong, Q. Miao, and W. Ma, “Inenet: Inliers estimation network with similarity learning for partial overlapping registration,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 3, pp. 1413–1426, 2022.
  39. R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and doubly stochastic matrices,” Pacific Journal of Mathematics, vol. 21, no. 2, pp. 343–348, 1967.
  40. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  41. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1912–1920.
  42. A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser, “3dmatch: Learning local geometric descriptors from rgb-d reconstructions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1802–1811.
  43. Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14.   Springer, 2016, pp. 766–782.
  44. Y. Shen, L. Hui, H. Jiang, J. Xie, and J. Yang, “Reliable inlier evaluation for unsupervised point cloud registration,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 2, 2022, pp. 2198–2206.
  45. Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data processing,” 2018.
  46. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
  47. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.   OpenReview.net, 2019. [Online]. Available: https://openreview.net/forum?id=Bkg6RiCqY7
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shiqi Li (16 papers)
  2. Jihua Zhu (61 papers)
  3. Yifan Xie (35 papers)

Summary

We haven't generated a summary for this paper yet.