Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback (2310.11550v1)

Published 17 Oct 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We study online reinforcement learning in linear Markov decision processes with adversarial losses and bandit feedback, without prior knowledge on transitions or access to simulators. We introduce two algorithms that achieve improved regret performance compared to existing approaches. The first algorithm, although computationally inefficient, ensures a regret of $\widetilde{\mathcal{O}}\left(\sqrt{K}\right)$, where $K$ is the number of episodes. This is the first result with the optimal $K$ dependence in the considered setting. The second algorithm, which is based on the policy optimization framework, guarantees a regret of $\widetilde{\mathcal{O}}\left(K{\frac{3}{4}} \right)$ and is computationally efficient. Both our results significantly improve over the state-of-the-art: a computationally inefficient algorithm by Kong et al. [2023] with $\widetilde{\mathcal{O}}\left(K{\frac{4}{5}}+poly\left(\frac{1}{\lambda_{\min}}\right) \right)$ regret, for some problem-dependent constant $\lambda_{\min}$ that can be arbitrarily close to zero, and a computationally efficient algorithm by Sherman et al. [2023b] with $\widetilde{\mathcal{O}}\left(K{\frac{6}{7}} \right)$ regret.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.