Papers
Topics
Authors
Recent
2000 character limit reached

Towards Automatic Satellite Images Captions Generation Using Large Language Models (2310.11392v1)

Published 17 Oct 2023 in cs.CV and cs.AI

Abstract: Automatic image captioning is a promising technique for conveying visual information using natural language. It can benefit various tasks in satellite remote sensing, such as environmental monitoring, resource management, disaster management, etc. However, one of the main challenges in this domain is the lack of large-scale image-caption datasets, as they require a lot of human expertise and effort to create. Recent research on LLMs has demonstrated their impressive performance in natural language understanding and generation tasks. Nonetheless, most of them cannot handle images (GPT-3.5, Falcon, Claude, etc.), while conventional captioning models pre-trained on general ground-view images often fail to produce detailed and accurate captions for aerial images (BLIP, GIT, CM3, CM3Leon, etc.). To address this problem, we propose a novel approach: Automatic Remote Sensing Image Captioning (ARSIC) to automatically collect captions for remote sensing images by guiding LLMs to describe their object annotations. We also present a benchmark model that adapts the pre-trained generative image2text model (GIT) to generate high-quality captions for remote-sensing images. Our evaluation demonstrates the effectiveness of our approach for collecting captions for remote sensing images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.