Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Error analysis for hybrid finite element/neural network discretizations (2310.11271v1)

Published 17 Oct 2023 in math.NA and cs.NA

Abstract: We describe and analyze a hybrid finite element/neural network method for predicting solutions of partial differential equations. The methodology is designed for obtaining fine scale fluctuations from neural networks in a local manner. The network is capable of locally correcting a coarse finite element solution towards a fine solution taking the source term and the coarse approximation as input. Key observation is the dependency between quality of predictions and the size of training set which consists of different source terms and corresponding fine & coarse solutions. We provide the a priori error analysis of the method together with the stability analysis of the neural network. The numerical experiments confirm the capability of the network predicting fine finite element solutions. We also illustrate the generalization of the method to problems where test and training domains differ from each other.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.