Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FocDepthFormer: Transformer with latent LSTM for Depth Estimation from Focal Stack (2310.11178v3)

Published 17 Oct 2023 in cs.CV, cs.AI, and eess.IV

Abstract: Most existing methods for depth estimation from a focal stack of images employ convolutional neural networks (CNNs) using 2D or 3D convolutions over a fixed set of images. However, their effectiveness is constrained by the local properties of CNN kernels, which restricts them to process only focal stacks of fixed number of images during both training and inference. This limitation hampers their ability to generalize to stacks of arbitrary lengths. To overcome these limitations, we present a novel Transformer-based network, FocDepthFormer, which integrates a Transformer with an LSTM module and a CNN decoder. The Transformer's self-attention mechanism allows for the learning of more informative spatial features by implicitly performing non-local cross-referencing. The LSTM module is designed to integrate representations across image stacks of varying lengths. Additionally, we employ multi-scale convolutional kernels in an early-stage encoder to capture low-level features at different degrees of focus/defocus. By incorporating the LSTM, FocDepthFormer can be pre-trained on large-scale monocular RGB depth estimation datasets, improving visual pattern learning and reducing reliance on difficult-to-obtain focal stack data. Extensive experiments on diverse focal stack benchmark datasets demonstrate that our model outperforms state-of-the-art approaches across multiple evaluation metrics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.