Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reuniting $χ$-boundedness with polynomial $χ$-boundedness (2310.11167v2)

Published 17 Oct 2023 in math.CO and cs.DM

Abstract: A class $\mathcal F$ of graphs is $\chi$-bounded if there is a function $f$ such that $\chi(H)\le f(\omega(H))$ for all induced subgraphs $H$ of a graph in $\mathcal F$. If $f$ can be chosen to be a polynomial, we say that $\mathcal F$ is polynomially $\chi$-bounded. Esperet proposed a conjecture that every $\chi$-bounded class of graphs is polynomially $\chi$-bounded. This conjecture has been disproved; it has been shown that there are classes of graphs that are $\chi$-bounded but not polynomially $\chi$-bounded. Nevertheless, inspired by Esperet's conjecture, we introduce Pollyanna classes of graphs. A class $\mathcal C$ of graphs is Pollyanna if $\mathcal C\cap \mathcal F$ is polynomially $\chi$-bounded for every $\chi$-bounded class $\mathcal F$ of graphs. We prove that several classes of graphs are Pollyanna and also present some proper classes of graphs that are not Pollyanna.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: