Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Leveraging Diverse Semantic-based Audio Pretrained Models for Singing Voice Conversion (2310.11160v3)

Published 17 Oct 2023 in cs.SD and eess.AS

Abstract: Singing Voice Conversion (SVC) is a technique that enables any singer to perform any song. To achieve this, it is essential to obtain speaker-agnostic representations from the source audio, which poses a significant challenge. A common solution involves utilizing a semantic-based audio pretrained model as a feature extractor. However, the degree to which the extracted features can meet the SVC requirements remains an open question. This includes their capability to accurately model melody and lyrics, the speaker-independency of their underlying acoustic information, and their robustness for in-the-wild acoustic environments. In this study, we investigate the knowledge within classical semantic-based pretrained models in much detail. We discover that the knowledge of different models is diverse and can be complementary for SVC. Based on the above, we design a Singing Voice Conversion framework based on Diverse Semantic-based Feature Fusion (DSFF-SVC). Experimental results demonstrate that DSFF-SVC can be generalized and improve various existing SVC models, particularly in challenging real-world conversion tasks. Our demo website is available at https://diversesemanticsvc.github.io/.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: