Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Privacy-Preserving Graph Embedding based on Local Differential Privacy (2310.11060v2)

Published 17 Oct 2023 in cs.CR, cs.LG, and cs.SI

Abstract: Graph embedding has become a powerful tool for learning latent representations of nodes in a graph. Despite its superior performance in various graph-based machine learning tasks, serious privacy concerns arise when the graph data contains personal or sensitive information. To address this issue, we investigate and develop graph embedding algorithms that satisfy local differential privacy (LDP). We introduce a novel privacy-preserving graph embedding framework, named PrivGE, to protect node data privacy. Specifically, we propose an LDP mechanism to obfuscate node data and utilize personalized PageRank as the proximity measure to learn node representations. Furthermore, we provide a theoretical analysis of the privacy guarantees and utility offered by the PrivGE framework. Extensive experiments on several real-world graph datasets demonstrate that PrivGE achieves an optimal balance between privacy and utility, and significantly outperforms existing methods in node classification and link prediction tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.