Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling (2310.11011v2)

Published 17 Oct 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Deep generative models have shown tremendous capability in data density estimation and data generation from finite samples. While these models have shown impressive performance by learning correlations among features in the data, some fundamental shortcomings are their lack of explainability, tendency to induce spurious correlations, and poor out-of-distribution extrapolation. To remedy such challenges, recent work has proposed a shift toward causal generative models. Causal models offer several beneficial properties to deep generative models, such as distribution shift robustness, fairness, and interpretability. Structural causal models (SCMs) describe data-generating processes and model complex causal relationships and mechanisms among variables in a system. Thus, SCMs can naturally be combined with deep generative models. We provide a technical survey on causal generative modeling categorized into causal representation learning and controllable counterfactual generation methods. We focus on fundamental theory, methodology, drawbacks, datasets, and metrics. Then, we cover applications of causal generative models in fairness, privacy, out-of-distribution generalization, precision medicine, and biological sciences. Lastly, we discuss open problems and fruitful research directions for future work in the field.

Citations (4)

Summary

We haven't generated a summary for this paper yet.