Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast and Simple Spectral Clustering in Theory and Practice (2310.10939v1)

Published 17 Oct 2023 in cs.DS and cs.LG

Abstract: Spectral clustering is a popular and effective algorithm designed to find $k$ clusters in a graph $G$. In the classical spectral clustering algorithm, the vertices of $G$ are embedded into $\mathbb{R}k$ using $k$ eigenvectors of the graph Laplacian matrix. However, computing this embedding is computationally expensive and dominates the running time of the algorithm. In this paper, we present a simple spectral clustering algorithm based on a vertex embedding with $O(\log(k))$ vectors computed by the power method. The vertex embedding is computed in nearly-linear time with respect to the size of the graph, and the algorithm provably recovers the ground truth clusters under natural assumptions on the input graph. We evaluate the new algorithm on several synthetic and real-world datasets, finding that it is significantly faster than alternative clustering algorithms, while producing results with approximately the same clustering accuracy.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube