Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Unlocking Emergent Modularity in Large Language Models (2310.10908v2)

Published 17 Oct 2023 in cs.LG and cs.AI

Abstract: Modular Neural Networks (MNNs) demonstrate various advantages over monolithic models. Existing MNNs are generally $\textit{explicit}$: their modular architectures are pre-defined, with individual modules expected to implement distinct functions. Recent works reveal that there exists $\textit{implicit}$ modularity in standard pre-trained transformers, namely $\textit{Emergent Modularity}$. They indicate that such modular structures spontaneously exhibit during the early pre-training phase. Despite the benefits of modularity, most LLMs (LMs) are still treated as monolithic models in the pre-train and fine-tune paradigm, with their emergent modularity locked and underutilized. In this work, focusing on unlocking the emergent modularity in LMs, we showcase that standard LMs could be fine-tuned as their Mixture-of-Expert (MoEs) counterparts without introducing any extra parameters. Such MoEs are derived from emergent modularity and are referred to as Emergent MoEs (EMoE). Our experiments demonstrate that fine-tuning EMoE effectively improves downstream in-domain and out-of-domain generalization compared with vanilla fine-tuning. Our analysis and ablation studies further illustrate that it is robust to various configurations and can scale up to LLMs (i.e., Llama2-7B and Llama-30B). Code is available at https://github.com/qiuzh20/EMoE.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.