Reuse Kernels or Activations? A Flexible Dataflow for Low-latency Spectral CNN Acceleration (2310.10902v1)
Abstract: Spectral-domain CNNs have been shown to be more efficient than traditional spatial CNNs in terms of reducing computation complexity. However they come with a `kernel explosion' problem that, even after compression (pruning), imposes a high memory burden and off-chip bandwidth requirement for kernel access. This creates a performance gap between the potential acceleration offered by compression and actual FPGA implementation performance, especially for low-latency CNN inference. In this paper, we develop a principled approach to overcoming this performance gap and designing a low-latency, low-bandwidth, spectral sparse CNN accelerator on FPGAs. First, we analyze the bandwidth-storage tradeoff of sparse convolutional layers and locate communication bottlenecks. We then develop a dataflow for flexibly optimizing data reuse in different layers to minimize off-chip communication. Finally, we propose a novel scheduling algorithm to optimally schedule the on-chip memory access of multiple sparse kernels and minimize read conflicts. On a state-of-the-art FPGA platform, our design reduces data transfers by 42\% with DSP utilization up to 90\% and achieves inference latency of 9 ms for VGG16, compared to the baseline state-of-the-art latency of 68 ms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.