Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analysis and Detection against Network Attacks in the Overlapping Phenomenon of Behavior Attribute (2310.10660v1)

Published 13 Sep 2023 in cs.CR, cs.LG, and cs.NI

Abstract: The proliferation of network attacks poses a significant threat. Researchers propose datasets for network attacks to support research in related fields. Then, many attack detection methods based on these datasets are proposed. These detection methods, whether two-classification or multi-classification, belong to single-label learning, i.e., only one label is given to each sample. However, we discover that there is a noteworthy phenomenon of behavior attribute overlap between attacks, The presentation of this phenomenon in a dataset is that there are multiple samples with the same features but different labels. In this paper, we verify the phenomenon in well-known datasets(UNSW-NB15, CCCS-CIC-AndMal-2020) and re-label these data. In addition, detecting network attacks in a multi-label manner can obtain more information, providing support for tracing the attack source and building IDS. Therefore, we propose a multi-label detection model based on deep learning, MLD-Model, in which Wasserstein-Generative-Adversarial- Network-with-Gradient-Penalty (WGAN-GP) with improved loss performs data enhancement to alleviate the class imbalance problem, and Auto-Encoder (AE) performs classifier parameter pre-training. Experimental results demonstrate that MLD-Model can achieve excellent classification performance. It can achieve F1=80.06% in UNSW-NB15 and F1=83.63% in CCCS-CIC-AndMal-2020. Especially, MLD-Model is 5.99%-7.97% higher in F1 compared with the related single-label methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube