Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Managing Networked IoT Assets Using Practical and Scalable Traffic Inference (2310.10657v1)

Published 7 Sep 2023 in cs.CR

Abstract: The Internet has recently witnessed unprecedented growth of a class of connected assets called the Internet of Things (IoT). Due to relatively immature manufacturing processes and limited computing resources, IoTs have inadequate device-level security measures, exposing the Internet to various cyber risks. Prior research leveraged predictable patterns in IoT network traffic to develop inference models. However, they fall short of expectations in addressing practical challenges, preventing them from being deployed in production settings. This thesis identifies four practical challenges and develops techniques to address them which can help secure businesses and protect user privacy against growing cyber threats. My first contribution balances prediction gains against computing costs of traffic features for IoT traffic classification and monitoring. My second contribution addresses the challenges of measurement costs and data quality. I develop an inference method that uses stochastic and deterministic modeling to predict IoT devices in home networks from opaque and coarse-grained IPFIX flow data. Evaluations show that false positive rates can be reduced by 75% compared to related work without significantly affecting true positives. My third contribution focuses on the challenge of concept drifts by analyzing over six million flow records collected from 12 real home networks. Finally, my fourth contribution studies the resilience of machine learning models against adversarial attacks with a specific focus on decision tree-based models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.