Higher-order finite element de Rham complexes, partially localized flux reconstructions, and applications (2310.10479v1)
Abstract: We construct finite element de~Rham complexes of higher and possibly non-uniform polynomial order in finite element exterior calculus (FEEC). Starting from the finite element differential complex of lowest-order, known as the complex of Whitney forms, we incrementally construct the higher-order complexes by adjoining exact local complexes associated to simplices. We define a commuting canonical interpolant. On the one hand, this research provides a base for studying $hp$-adaptive methods in finite element exterior calculus. On the other hand, our construction of higher-order spaces enables a new tool in numerical analysis which we call "partially localized flux reconstruction". One major application of this concept is in the area of equilibrated a~posteriori error estimators: we generalize the Braess-Sch\"oberl error estimator to edge elements of higher and possibly non-uniform order.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.