Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combating Label Noise With A General Surrogate Model For Sample Selection (2310.10463v2)

Published 16 Oct 2023 in cs.CV

Abstract: Modern deep learning systems are data-hungry. Learning with web data is one of the feasible solutions, but will introduce label noise inevitably, which can hinder the performance of deep neural networks. Sample selection is an effective way to deal with label noise. The key is to separate clean samples based on some criterion. Previous methods pay more attention to the small loss criterion where small-loss samples are regarded as clean ones. Nevertheless, such a strategy relies on the learning dynamics of each data instance. Some noisy samples are still memorized due to frequently occurring corrupted learning patterns. To tackle this problem, a training-free surrogate model is preferred, freeing from the effect of memorization. In this work, we propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically. CLIP brings external knowledge to facilitate the selection of clean samples with its ability of text-image alignment. Furthermore, a margin adaptive loss is designed to regularize the selection bias introduced by CLIP, providing robustness to label noise. We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets. Our method achieves significant improvement without CLIP involved during the inference stage.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.