Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Open-CRB: Towards Open World Active Learning for 3D Object Detection (2310.10391v2)

Published 16 Oct 2023 in cs.CV, cs.AI, and cs.LG

Abstract: LiDAR-based 3D object detection has recently seen significant advancements through active learning (AL), attaining satisfactory performance by training on a small fraction of strategically selected point clouds. However, in real-world deployments where streaming point clouds may include unknown or novel objects, the ability of current AL methods to capture such objects remains unexplored. This paper investigates a more practical and challenging research task: Open World Active Learning for 3D Object Detection (OWAL-3D), aimed at acquiring informative point clouds with new concepts. To tackle this challenge, we propose a simple yet effective strategy called Open Label Conciseness (OLC), which mines novel 3D objects with minimal annotation costs. Our empirical results show that OLC successfully adapts the 3D detection model to the open world scenario with just a single round of selection. Any generic AL policy can then be integrated with the proposed OLC to efficiently address the OWAL-3D problem. Based on this, we introduce the Open-CRB framework, which seamlessly integrates OLC with our preliminary AL method, CRB, designed specifically for 3D object detection. We develop a comprehensive codebase for easy reproducing and future research, supporting 15 baseline methods (\textit{i.e.}, active learning, out-of-distribution detection and open world detection), 2 types of modern 3D detectors (\textit{i.e.}, one-stage SECOND and two-stage PV-RCNN) and 3 benchmark 3D datasets (\textit{i.e.}, KITTI, nuScenes and Waymo). Extensive experiments evidence that the proposed Open-CRB demonstrates superiority and flexibility in recognizing both novel and known classes with very limited labeling costs, compared to state-of-the-art baselines. Source code is available at \url{https://github.com/Luoyadan/CRB-active-3Ddet/tree/Open-CRB}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.