Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Expression Domain Translation Network for Cross-domain Head Reenactment (2310.10073v2)

Published 16 Oct 2023 in cs.CV

Abstract: Despite the remarkable advancements in head reenactment, the existing methods face challenges in cross-domain head reenactment, which aims to transfer human motions to domains outside the human, including cartoon characters. It is still difficult to extract motion from out-of-domain images due to the distinct appearances, such as large eyes. Recently, previous work introduced a large-scale anime dataset called AnimeCeleb and a cross-domain head reenactment model, including an optimization-based mapping function to translate the human domain's expressions to the anime domain. However, we found that the mapping function, which relies on a subset of expressions, imposes limitations on the mapping of various expressions. To solve this challenge, we introduce a novel expression domain translation network that transforms human expressions into anime expressions. Specifically, to maintain the geometric consistency of expressions between the input and output of the expression domain translation network, we employ a 3D geometric-aware loss function that reduces the distances between the vertices in the 3D mesh of the human and anime. By doing so, it forces high-fidelity and one-to-one mapping with respect to two cross-expression domains. Our method outperforms existing methods in both qualitative and quantitative analysis, marking a significant advancement in the field of cross-domain head reenactment.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.