Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dual-Scale Interest Extraction Framework with Self-Supervision for Sequential Recommendation (2310.10025v1)

Published 16 Oct 2023 in cs.IR

Abstract: In the sequential recommendation task, the recommender generally learns multiple embeddings from a user's historical behaviors, to catch the diverse interests of the user. Nevertheless, the existing approaches just extract each interest independently for the corresponding sub-sequence while ignoring the global correlation of the entire interaction sequence, which may fail to capture the user's inherent preference for the potential interests generalization and unavoidably make the recommended items homogeneous with the historical behaviors. In this paper, we propose a novel Dual-Scale Interest Extraction framework (DSIE) to precisely estimate the user's current interests. Specifically, DSIE explicitly models the user's inherent preference with contrastive learning by attending over his/her entire interaction sequence at the global scale and catches the user's diverse interests in a fine granularity at the local scale. Moreover, we develop a novel interest aggregation module to integrate the multi-interests according to the inherent preference to generate the user's current interests for the next-item prediction. Experiments conducted on three real-world benchmark datasets demonstrate that DSIE outperforms the state-of-the-art models in terms of recommendation preciseness and novelty.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.