Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

SCME: A Self-Contrastive Method for Data-free and Query-Limited Model Extraction Attack (2310.09792v1)

Published 15 Oct 2023 in cs.CV

Abstract: Previous studies have revealed that AI systems are vulnerable to adversarial attacks. Among them, model extraction attacks fool the target model by generating adversarial examples on a substitute model. The core of such an attack is training a substitute model as similar to the target model as possible, where the simulation process can be categorized in a data-dependent and data-free manner. Compared with the data-dependent method, the data-free one has been proven to be more practical in the real world since it trains the substitute model with synthesized data. However, the distribution of these fake data lacks diversity and cannot detect the decision boundary of the target model well, resulting in the dissatisfactory simulation effect. Besides, these data-free techniques need a vast number of queries to train the substitute model, increasing the time and computing consumption and the risk of exposure. To solve the aforementioned problems, in this paper, we propose a novel data-free model extraction method named SCME (Self-Contrastive Model Extraction), which considers both the inter- and intra-class diversity in synthesizing fake data. In addition, SCME introduces the Mixup operation to augment the fake data, which can explore the target model's decision boundary effectively and improve the simulating capacity. Extensive experiments show that the proposed method can yield diversified fake data. Moreover, our method has shown superiority in many different attack settings under the query-limited scenario, especially for untargeted attacks, the SCME outperforms SOTA methods by 11.43\% on average for five baseline datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube