Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Negative Sampling with Adaptive Denoising Mixup for Knowledge Graph Embedding (2310.09781v1)

Published 15 Oct 2023 in cs.AI

Abstract: Knowledge graph embedding (KGE) aims to map entities and relations of a knowledge graph (KG) into a low-dimensional and dense vector space via contrasting the positive and negative triples. In the training process of KGEs, negative sampling is essential to find high-quality negative triples since KGs only contain positive triples. Most existing negative sampling methods assume that non-existent triples with high scores are high-quality negative triples. However, negative triples sampled by these methods are likely to contain noise. Specifically, they ignore that non-existent triples with high scores might also be true facts due to the incompleteness of KGs, which are usually called false negative triples. To alleviate the above issue, we propose an easily pluggable denoising mixup method called DeMix, which generates high-quality triples by refining sampled negative triples in a self-supervised manner. Given a sampled unlabeled triple, DeMix firstly classifies it into a marginal pseudo-negative triple or a negative triple based on the judgment of the KGE model itself. Secondly, it selects an appropriate mixup partner for the current triple to synthesize a partially positive or a harder negative triple. Experimental results on the knowledge graph completion task show that the proposed DeMix is superior to other negative sampling techniques, ensuring corresponding KGEs a faster convergence and better link prediction results.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.