Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Moral consensus and divergence in partisan language use (2310.09618v1)

Published 14 Oct 2023 in cs.CL

Abstract: Polarization has increased substantially in political discourse, contributing to a widening partisan divide. In this paper, we analyzed large-scale, real-world language use in Reddit communities (294,476,146 comments) and in news outlets (6,749,781 articles) to uncover psychological dimensions along which partisan language is divided. Using word embedding models that captured semantic associations based on co-occurrences of words in vast textual corpora, we identified patterns of affective polarization present in natural political discourse. We then probed the semantic associations of words related to seven political topics (e.g., abortion, immigration) along the dimensions of morality (moral-to-immoral), threat (threatening-to-safe), and valence (pleasant-to-unpleasant). Across both Reddit communities and news outlets, we identified a small but systematic divergence in the moral associations of words between text sources with different partisan leanings. Moral associations of words were highly correlated between conservative and liberal text sources (average $\rho$ = 0.96), but the differences remained reliable to enable us to distinguish text sources along partisan lines with above 85% classification accuracy. These findings underscore that despite a shared moral understanding across the political spectrum, there are consistent differences that shape partisan language and potentially exacerbate political polarization. Our results, drawn from both informal interactions on social media and curated narratives in news outlets, indicate that these trends are widespread. Leveraging advanced computational techniques, this research offers a fresh perspective that complements traditional methods in political attitudes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.