Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Energy-Efficient Multi-Codec Bitrate-Ladder Estimation for Adaptive Video Streaming (2310.09570v1)

Published 14 Oct 2023 in cs.MM

Abstract: With the emergence of multiple modern video codecs, streaming service providers are forced to encode, store, and transmit bitrate ladders of multiple codecs separately, consequently suffering from additional energy costs for encoding, storage, and transmission. To tackle this issue, we introduce an online energy-efficient Multi-Codec Bitrate ladder Estimation scheme (MCBE) for adaptive video streaming applications. In MCBE, quality representations within the bitrate ladder of new-generation codecs (e.g., High Efficiency Video Coding (HEVC), Alliance for Open Media Video 1 (AV1)) that lie below the predicted rate-distortion curve of the Advanced Video Coding (AVC) codec are removed. Moreover, perceptual redundancy between representations of the bitrate ladders of the considered codecs is also minimized based on a Just Noticeable Difference (JND) threshold. Therefore, random forest-based models predict the VMAF score of bitrate ladder representations of each codec. In a live streaming session where all clients support the decoding of AVC, HEVC, and AV1, MCBE achieves impressive results, reducing cumulative encoding energy by 56.45%, storage energy usage by 94.99%, and transmission energy usage by 77.61% (considering a JND of six VMAF points). These energy reductions are in comparison to a baseline bitrate ladder encoding based on current industry practice.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube