Efficient Link Prediction via GNN Layers Induced by Negative Sampling (2310.09516v2)
Abstract: Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, \emph{node-wise} architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time, model expressiveness is limited such that isomorphic nodes contributing to candidate edges may not be distinguishable, compromising accuracy. In contrast, \emph{edge-wise} methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships, disambiguating isomorphic nodes to improve accuracy, but with increased model complexity. To better navigate this trade-off, we propose a novel GNN architecture whereby the \emph{forward pass} explicitly depends on \emph{both} positive (as is typical) and negative (unique to our approach) edges to inform more flexible, yet still cheap node-wise embeddings. This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function that favors separation of positive and negative samples. Notably, this energy is distinct from the actual training loss shared by most existing link prediction models, where contrastive pairs only influence the \textit{backward pass}. As demonstrated by extensive empirical evaluations, the resulting architecture retains the inference speed of node-wise models, while producing competitive accuracy with edge-wise alternatives. We released our code at https://github.com/yxzwang/SubmissionverOfYinYanGNN.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.