Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

User Inference Attacks on Large Language Models (2310.09266v2)

Published 13 Oct 2023 in cs.CR, cs.CL, and cs.LG

Abstract: Fine-tuning is a common and effective method for tailoring LLMs to specialized tasks and applications. In this paper, we study the privacy implications of fine-tuning LLMs on user data. To this end, we consider a realistic threat model, called user inference, wherein an attacker infers whether or not a user's data was used for fine-tuning. We design attacks for performing user inference that require only black-box access to the fine-tuned LLM and a few samples from a user which need not be from the fine-tuning dataset. We find that LLMs are susceptible to user inference across a variety of fine-tuning datasets, at times with near perfect attack success rates. Further, we theoretically and empirically investigate the properties that make users vulnerable to user inference, finding that outlier users, users with identifiable shared features between examples, and users that contribute a large fraction of the fine-tuning data are most susceptible to attack. Based on these findings, we identify several methods for mitigating user inference including training with example-level differential privacy, removing within-user duplicate examples, and reducing a user's contribution to the training data. While these techniques provide partial mitigation of user inference, we highlight the need to develop methods to fully protect fine-tuned LLMs against this privacy risk.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: