Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Qilin-Med: Multi-stage Knowledge Injection Advanced Medical Large Language Model (2310.09089v2)

Published 13 Oct 2023 in cs.CL

Abstract: Integrating LLMs into healthcare holds great potential but faces challenges. Pre-training LLMs from scratch for domains like medicine is resource-heavy and often unfeasible. On the other hand, sole reliance on Supervised Fine-tuning (SFT) can result in overconfident predictions and may not tap into domain-specific insights. In response, we present a multi-stage training method combining Domain-specific Continued Pre-training (DCPT), SFT, and Direct Preference Optimization (DPO). In addition, we publish a 3Gb Chinese Medicine (ChiMed) dataset, encompassing medical question answering, plain texts, knowledge graphs, and dialogues, segmented into three training stages. The medical LLM trained with our pipeline, Qilin-Med, shows substantial performance improvement. In the CPT and SFT phases, Qilin-Med achieved 38.4% and 40.0% accuracy on the CMExam test set, respectively. It outperformed the basemodel Baichuan-7B (accuracy: 33.5%), by 7.5%. In the DPO phase, it scored 16.66 in BLEU-1 and 27.44 in ROUGE-1 on the Huatuo-26M test set, bringing further improvement to the SFT phase (12.69 in BLEU-1 and 24.21 in ROUGE-1). Additionally, we have further enhanced the model's performance through the Retrieval Augmented Generation (RAG) approach. Experiments demonstrate that Qilin-Med-RAG achieves an accuracy rate of 42.8% on CMExam. These results highlight the contribution of our novel training approach in building LLMs for medical applications.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.