Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control (2310.09053v3)

Published 13 Oct 2023 in cs.RO, cs.AI, cs.SY, and eess.SY

Abstract: Precise arbitrary trajectory tracking for quadrotors is challenging due to unknown nonlinear dynamics, trajectory infeasibility, and actuation limits. To tackle these challenges, we present Deep Adaptive Trajectory Tracking (DATT), a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world. DATT builds on a novel feedforward-feedback-adaptive control structure trained in simulation using reinforcement learning. When deployed on real hardware, DATT is augmented with a disturbance estimator using L1 adaptive control in closed-loop, without any fine-tuning. DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields, including challenging scenarios where baselines completely fail. Moreover, DATT can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors. In 2011 IEEE International Conference on Robotics and Automation (ICRA), pages 2520–2525. IEEE, 2011. URL http://ieeexplore.ieee.org/abstract/document/5980409/.
  2. Geometric tracking control of a quadrotor uav on se (3). In 49th IEEE conference on decision and control (CDC), pages 5420–5425. IEEE, 2010.
  3. Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories. IEEE Robotics and Automation Letters, 3(2):620–626, Apr. 2018. ISSN 2377-3766, 2377-3774. doi:10.1109/LRA.2017.2776353. URL http://arxiv.org/abs/1712.02402. arXiv: 1712.02402.
  4. Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 1714–1721. IEEE, 2017.
  5. A comparative study of nonlinear mpc and differential-flatness-based control for quadrotor agile flight. IEEE Transactions on Robotics, 38(6):3357–3373, 2022. doi:10.1109/TRO.2022.3177279.
  6. Control of a Quadrotor with Reinforcement Learning. IEEE Robotics and Automation Letters, 2(4):2096–2103, Oct. 2017. ISSN 2377-3766, 2377-3774. doi:10.1109/LRA.2017.2720851. URL http://arxiv.org/abs/1707.05110. arXiv:1707.05110 [cs].
  7. Deep Drone Acrobatics. In Robotics: Science and Systems XVI. Robotics: Science and Systems Foundation, July 2020. ISBN 978-0-9923747-6-1. doi:10.15607/RSS.2020.XVI.040. URL http://www.roboticsproceedings.org/rss16/p040.pdf.
  8. Optimal and autonomous control using reinforcement learning: A survey. IEEE transactions on neural networks and learning systems, 29(6):2042–2062, 2017.
  9. Neural Lander: Stable Drone Landing Control using Learned Dynamics. 2019 International Conference on Robotics and Automation (ICRA), pages 9784–9790, May 2019. doi:10.1109/ICRA.2019.8794351. URL http://arxiv.org/abs/1811.08027. arXiv: 1811.08027.
  10. Neural-fly enables rapid learning for agile flight in strong winds. Science Robotics, 7(66):eabm6597, 2022.
  11. ℒ1subscriptℒ1\mathcal{L}_{1}caligraphic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT quad: ℒ1subscriptℒ1\mathcal{L}_{1}caligraphic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT adaptive augmentation of geometric control for agile quadrotors with performance guarantees. arXiv preprint arXiv:2302.07208, 2023.
  12. Performance, precision, and payloads: Adaptive nonlinear mpc for quadrotors. IEEE Robotics and Automation Letters, 7(2):690–697, 2022. doi:10.1109/LRA.2021.3131690.
  13. A. Spitzer and N. Michael. Inverting Learned Dynamics Models for Aggressive Multirotor Control. In Robotics: Science and Systems XV. Robotics: Science and Systems Foundation, June 2019. ISBN 978-0-9923747-5-4. doi:10.15607/RSS.2019.XV.065. URL http://www.roboticsproceedings.org/rss15/p65.pdf. arXiv: 1905.13441.
  14. Differential Flatness Transformations for Aggressive Quadrotor Flight. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 5204–5210, Brisbane, QLD, May 2018. IEEE. ISBN 978-1-5386-3081-5. doi:10.1109/ICRA.2018.8460838. URL https://ieeexplore.ieee.org/document/8460838/.
  15. Model predictive control. Springer science & business media, 2013.
  16. The power of predictions in online control. Advances in Neural Information Processing Systems, 33:1994–2004, 2020.
  17. Aggressive driving with model predictive path integral control. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1433–1440. IEEE, 2016.
  18. ℒ1subscriptℒ1\mathcal{L}_{1}caligraphic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-adaptive mppi architecture for robust and agile control of multirotors. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 7661–7666, 2020. doi:10.1109/IROS45743.2020.9341154.
  19. Aggressive perception-aware navigation using deep optical flow dynamics and pixelmpc. IEEE Robotics and Automation Letters, 5(2):1207–1214, 2020. doi:10.1109/LRA.2020.2965911.
  20. Monocular vision-based sense and avoid of uav using nonlinear model predictive control. Robotica, 37(9):1582–1594, 2019. doi:10.1017/S0263574719000158.
  21. B. Michini and J. How. L1 Adaptive Control for Indoor Autonomous Vehicles: Design Process and Flight Testing. In Proceeding of AIAA Guidance, Navigation, and Control Conference, pages 5754–5768, 2009. URL https://arc.aiaa.org/doi/pdf/10.2514/6.2009-5754.
  22. Unscented external force and torque estimation for quadrotors. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5651–5657, Daejeon, South Korea, Oct. 2016. IEEE. ISBN 978-1-5090-3762-9. doi:10.1109/IROS.2016.7759831. URL http://ieeexplore.ieee.org/document/7759831/.
  23. E. Tal and S. Karaman. Accurate Tracking of Aggressive Quadrotor Trajectories using Incremental Nonlinear Dynamic Inversion and Differential Flatness. In 2018 IEEE Conference on Decision and Control (CDC), pages 4282–4288, Miami Beach, FL, Dec. 2018. IEEE. ISBN 978-1-5386-1395-5. doi:10.1109/CDC.2018.8619621. URL https://arxiv.org/abs/1809.04048. ISSN: 0743-1546.
  24. Learning a single near-hover position controller for vastly different quadcopters. arXiv preprint arXiv:2209.09232, 2022.
  25. Non-parametric neuro-adaptive coordination of multi-agent systems. In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’22, page 1747–1749, Richland, SC, 2022. International Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450392136.
  26. Data-Driven MPC for Quadrotors. IEEE Robotics and Automation Letters, 2021. ISSN 2377-3766, 2377-3774. doi:10.1109/LRA.2021.3061307. URL http://arxiv.org/abs/2102.05773. arXiv: 2102.05773.
  27. A. Spitzer and N. Michael. Feedback Linearization for Quadrotors with a Learned Acceleration Error Model. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 6042–6048, May 2021. doi:10.1109/ICRA48506.2021.9561708. URL https://ieeexplore.ieee.org/document/9561708. ISSN: 2577-087X.
  28. Neural-swarm2: Planning and control of heterogeneous multirotor swarms using learned interactions. IEEE Transactions on Robotics, 38(2):1063–1079, 2021.
  29. RMA: Rapid Motor Adaptation for Legged Robots, July 2021. URL http://arxiv.org/abs/2107.04034. arXiv:2107.04034 [cs].
  30. Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Policies to Multiple Quadrotors. arXiv:1903.04628 [cs], Apr. 2019. URL http://arxiv.org/abs/1903.04628. arXiv: 1903.04628.
  31. A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight, Feb. 2022. URL http://arxiv.org/abs/2202.10796. arXiv:2202.10796 [cs].
  32. Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.
  33. N. Hovakimyan and C. Cao. ℒℒ\mathcal{L}caligraphic_L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. Society for Industrial and Applied Mathematics, 2010.
  34. Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 3299–3304, 2017. doi:10.1109/ICRA.2017.7989376.
  35. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.
Citations (15)

Summary

We haven't generated a summary for this paper yet.