Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-Purpose NLP Chatbot : Design, Methodology & Conclusion (2310.08977v1)

Published 13 Oct 2023 in cs.AI

Abstract: With a major focus on its history, difficulties, and promise, this research paper provides a thorough analysis of the chatbot technology environment as it exists today. It provides a very flexible chatbot system that makes use of reinforcement learning strategies to improve user interactions and conversational experiences. Additionally, this system makes use of sentiment analysis and natural language processing to determine user moods. The chatbot is a valuable tool across many fields thanks to its amazing characteristics, which include voice-to-voice conversation, multilingual support [12], advising skills, offline functioning, and quick help features. The complexity of chatbot technology development is also explored in this study, along with the causes that have propelled these developments and their far-reaching effects on a range of sectors. According to the study, three crucial elements are crucial: 1) Even without explicit profile information, the chatbot system is built to adeptly understand unique consumer preferences and fluctuating satisfaction levels. With the use of this capacity, user interactions are made to meet their wants and preferences. 2) Using a complex method that interlaces Multiview voice chat information, the chatbot may precisely simulate users' actual experiences. This aids in developing more genuine and interesting discussions. 3) The study presents an original method for improving the black-box deep learning models' capacity for prediction. This improvement is made possible by introducing dynamic satisfaction measurements that are theory-driven, which leads to more precise forecasts of consumer reaction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.