Gesture Recognition for FMCW Radar on the Edge (2310.08876v2)
Abstract: This paper introduces a lightweight gesture recognition system based on 60 GHz frequency modulated continuous wave (FMCW) radar. We show that gestures can be characterized efficiently by a set of five features, and propose a slim radar processing algorithm to extract these features. In contrast to previous approaches, we avoid heavy 2D processing, i.e. range-Doppler imaging, and perform instead an early target detection - this allows us to port the system to fully embedded platforms with tight constraints on memory, compute and power consumption. A recurrent neural network (RNN) based architecture exploits these features to jointly detect and classify five different gestures. The proposed system recognizes gestures with an F1 score of 98.4% on our hold-out test dataset, it runs on an Arm Cortex-M4 microcontroller requiring less than 280 kB of flash memory, 120 kB of RAM, and consuming 75 mW of power.
- Google. (2022) Nest thermostat. Retrieved 22.02.2023. [Online]. Available: https://www.nest.com/
- Infineon. (2022) XENSIV™ 60 GHz radar. Retrieved 22.02.2023. [Online]. Available: https://www.infineon.com/cms/en/product/promopages/60GHz/
- S. Trotta, D. Weber, R. W. Jungmaier, A. Baheti, J. Lien, D. Noppeney, M. Tabesh, C. Rumpler, M. Aichner, S. Albel, J. S. Bal, and I. Poupyrev, “2.3 soli: A tiny device for a new human machine interface,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp. 42–44.
- J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: Ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph., vol. 35, no. 4, Jul 2016.
- J.-W. Choi, S.-J. Ryu, and J.-H. Kim, “Short-range radar based real-time hand gesture recognition using lstm encoder,” IEEE Access, vol. 7, pp. 33 610–33 618, 2019.
- B. Dekker, S. Jacobs, A. Kossen, M. Kruithof, A. Huizing, and M. Geurts, “Gesture recognition with a low power fmcw radar and a deep convolutional neural network,” in 2017 European Radar Conference (EURAD), 2017, pp. 163–166.
- E. Hayashi, J. Lien, N. Gillian, L. Giusti, D. Weber, J. Yamanaka, L. Bedal, and I. Poupyrev, “RadarNet: Efficient gesture recognition technique utilizing a miniature radar sensor,” in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, ser. CHI ’21, 2021.
- A. Raju, S. Panchapagesan, X. Liu, A. Mandal, and N. Strom, “Data augmentation for robust keyword spotting under playback interference,” CoRR, vol. abs/1808.00563, 2018. [Online]. Available: http://arxiv.org/abs/1808.00563
- Maximilian Strobel (3 papers)
- Stephan Schoenfeldt (1 paper)
- Jonas Daugalas (1 paper)