Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gesture Recognition for FMCW Radar on the Edge (2310.08876v2)

Published 13 Oct 2023 in cs.LG and eess.SP

Abstract: This paper introduces a lightweight gesture recognition system based on 60 GHz frequency modulated continuous wave (FMCW) radar. We show that gestures can be characterized efficiently by a set of five features, and propose a slim radar processing algorithm to extract these features. In contrast to previous approaches, we avoid heavy 2D processing, i.e. range-Doppler imaging, and perform instead an early target detection - this allows us to port the system to fully embedded platforms with tight constraints on memory, compute and power consumption. A recurrent neural network (RNN) based architecture exploits these features to jointly detect and classify five different gestures. The proposed system recognizes gestures with an F1 score of 98.4% on our hold-out test dataset, it runs on an Arm Cortex-M4 microcontroller requiring less than 280 kB of flash memory, 120 kB of RAM, and consuming 75 mW of power.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (8)
  1. Google. (2022) Nest thermostat. Retrieved 22.02.2023. [Online]. Available: https://www.nest.com/
  2. Infineon. (2022) XENSIV™ 60 GHz radar. Retrieved 22.02.2023. [Online]. Available: https://www.infineon.com/cms/en/product/promopages/60GHz/
  3. S. Trotta, D. Weber, R. W. Jungmaier, A. Baheti, J. Lien, D. Noppeney, M. Tabesh, C. Rumpler, M. Aichner, S. Albel, J. S. Bal, and I. Poupyrev, “2.3 soli: A tiny device for a new human machine interface,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp. 42–44.
  4. J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: Ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph., vol. 35, no. 4, Jul 2016.
  5. J.-W. Choi, S.-J. Ryu, and J.-H. Kim, “Short-range radar based real-time hand gesture recognition using lstm encoder,” IEEE Access, vol. 7, pp. 33 610–33 618, 2019.
  6. B. Dekker, S. Jacobs, A. Kossen, M. Kruithof, A. Huizing, and M. Geurts, “Gesture recognition with a low power fmcw radar and a deep convolutional neural network,” in 2017 European Radar Conference (EURAD), 2017, pp. 163–166.
  7. E. Hayashi, J. Lien, N. Gillian, L. Giusti, D. Weber, J. Yamanaka, L. Bedal, and I. Poupyrev, “RadarNet: Efficient gesture recognition technique utilizing a miniature radar sensor,” in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, ser. CHI ’21, 2021.
  8. A. Raju, S. Panchapagesan, X. Liu, A. Mandal, and N. Strom, “Data augmentation for robust keyword spotting under playback interference,” CoRR, vol. abs/1808.00563, 2018. [Online]. Available: http://arxiv.org/abs/1808.00563
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Maximilian Strobel (3 papers)
  2. Stephan Schoenfeldt (1 paper)
  3. Jonas Daugalas (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.