Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Stronger Coreset Bounds for Kernel Density Estimators via Chaining (2310.08548v1)

Published 12 Oct 2023 in cs.LG, cs.CG, and cs.DS

Abstract: We apply the discrepancy method and a chaining approach to give improved bounds on the coreset complexity of a wide class of kernel functions. Our results give randomized polynomial time algorithms to produce coresets of size $O\big(\frac{\sqrt{d}}{\varepsilon}\sqrt{\log\log \frac{1}{\varepsilon}}\big)$ for the Gaussian and Laplacian kernels in the case that the data set is uniformly bounded, an improvement that was not possible with previous techniques. We also obtain coresets of size $O\big(\frac{1}{\varepsilon}\sqrt{\log\log \frac{1}{\varepsilon}}\big)$ for the Laplacian kernel for $d$ constant. Finally, we give the best known bounds of $O\big(\frac{\sqrt{d}}{\varepsilon}\sqrt{\log(2\max{1,\alpha})}\big)$ on the coreset complexity of the exponential, Hellinger, and JS Kernels, where $1/\alpha$ is the bandwidth parameter of the kernel.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.