Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Slip Detection and Surface Prediction Through Bio-Inspired Tactile Feedback (2310.08192v1)

Published 12 Oct 2023 in cs.RO

Abstract: High resolution tactile sensing has great potential in autonomous mobile robotics, particularly for legged robots. One particular area where it has significant promise is the traversal of challenging, varied terrain. Depending on whether an environment is slippery, soft, hard or dry, a robot must adapt its method of locomotion accordingly. Currently many multi-legged robots, such as Boston Dynamic's Spot robot, have preset gaits for different surface types, but struggle over terrains where the surface type changes frequently. Being able to automatically detect changes within an environment would allow a robot to autonomously adjust its method of locomotion to better suit conditions, without requiring a human user to manually set the change in surface type. In this paper we report on the first detailed investigation of the properties of a particular bio-inspired tactile sensor, the TacTip, to test its suitability for this kind of automatic detection of surface conditions. We explored different processing techniques and a regression model, using a custom made rig for data collection to determine how a robot could sense directional and general force on the sensor in a variety of conditions. This allowed us to successfully demonstrate how the sensor can be used to distinguish between soft, hard, dry and (wet) slippery surfaces. We further explored a neural model to classify specific surface textures. Pin movement (the movement of optical markers within the sensor) was key to sensing this information, and all models relied on some form of temporal information. Our final trained models could successfully determine the direction the sensor is heading in, the amount of force acting on it, and determine differences in the surface texture such as Lego vs smooth hard surface, or concrete vs smooth hard surface.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.