Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Open-Set Knowledge-Based Visual Question Answering with Inference Paths (2310.08148v1)

Published 12 Oct 2023 in cs.LG

Abstract: Given an image and an associated textual question, the purpose of Knowledge-Based Visual Question Answering (KB-VQA) is to provide a correct answer to the question with the aid of external knowledge bases. Prior KB-VQA models are usually formulated as a retriever-classifier framework, where a pre-trained retriever extracts textual or visual information from knowledge graphs and then makes a prediction among the candidates. Despite promising progress, there are two drawbacks with existing models. Firstly, modeling question-answering as multi-class classification limits the answer space to a preset corpus and lacks the ability of flexible reasoning. Secondly, the classifier merely consider "what is the answer" without "how to get the answer", which cannot ground the answer to explicit reasoning paths. In this paper, we confront the challenge of \emph{explainable open-set} KB-VQA, where the system is required to answer questions with entities at wild and retain an explainable reasoning path. To resolve the aforementioned issues, we propose a new retriever-ranker paradigm of KB-VQA, Graph pATH rankER (GATHER for brevity). Specifically, it contains graph constructing, pruning, and path-level ranking, which not only retrieves accurate answers but also provides inference paths that explain the reasoning process. To comprehensively evaluate our model, we reformulate the benchmark dataset OK-VQA with manually corrected entity-level annotations and release it as ConceptVQA. Extensive experiments on real-world questions demonstrate that our framework is not only able to perform open-set question answering across the whole knowledge base but provide explicit reasoning path.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.