Interval Decomposition of Persistence Modules over a Principal Ideal Domain (2310.07971v4)
Abstract: The study of persistent homology has contributed new insights and perspectives into a variety of interesting problems in science and engineering. Work in this domain relies on the result that any finitely-indexed persistence module of finite-dimensional vector spaces admits an interval decomposition -- that is, a decomposition as a direct sum of simpler components called interval modules. This result fails if we replace vector spaces with modules over more general coefficient rings. We introduce an algorithm to determine whether a persistence module of pointwise free and finitely-generated modules over a principal ideal domain (PID) splits as a direct sum of interval submodules. If one exists, our algorithm outputs an interval decomposition. When considering persistence modules with coefficients in $\Z$ or $\Q[x]$, our algorithm computes an interval decomposition in polynomial time. This is the first algorithm with these properties of which we are aware. We also show that a persistence module of pointwise free and finitely-generated modules over a PID splits as a direct sum of interval submodules if and only if the cokernel of every structure map is free. This result underpins the formulation of our algorithm. It also complements prior findings by Obayashi and Yoshiwaki regarding persistent homology, including a criterion for field independence and an algorithm to decompose persistence homology modules of simplex-wise filtrations.
- Journal of Symbolic Computation 78, 76–90 (2017)
- No. 25 in Colloquium Publications. American Mathematical Society, Providence, RI (1995)
- In: SoCG 2020 - 36th International Symposium on Computational Geometry. Zurich, Switzerland (2020)
- In: Y. Azar, H. Bast, G. Herman (eds.) 26th Annual European Symposium on Algorithms (ESA 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 112, pp. 67:1–67:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2018)
- Preprint arXiv:2203.14289
- Foundations of Computational Mathematics 10(4), 367–405 (2010)
- Discrete & Computational Geometry 42(1), 71–93 (2009)
- In: Proceedings of the twenty-second annual symposium on Computational geometry, pp. 119–126 (2006)
- Curto, C.: What can topology tell us about the neural code? Bulletin of the American Mathematical Society 54(1), 63–78 (2017)
- Inverse Problems 27(12), 124003 (2011)
- In: Proceedings of the twenty-fifth annual symposium on Computational geometry, pp. 227–236. Association for Computing Machinery, Aarhus Denmark (2009)
- Cambridge University Press, New York (2022)
- PeerJ 6, e5461 (2018)
- Wiley, Hoboken, NJ (2004)
- Discrete & Computational Geometry 28(4), 511–533 (2002)
- Gabriel, P.: Unzerlegbare darstellungen I. Manuscripta Mathematica 6, 71–103 (1972)
- Ghrist, R.: Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society 45(01), 61–76 (2007)
- Preprint arXiv.2112.04927
- In: X. Goaoc, M. Kerber (eds.) 38th International Symposium on Computational Geometry (SoCG 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol. 224, pp. 44:1–44:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022)
- Grandis, M.: Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups. World Scientific, Singapore ; Hackensack, N.J (2012)
- Preprint arXiv:2201.06650
- Preprint arXiv.2108.08831
- Frontiers in Artificial Intelligence 4, 681117 (2021)
- Preprint arXiv.1911.11350v3
- Discrete & Computational Geometry 70(3), 645–670 (2023)
- Journal of the Ceramic Society of Japan 127(12), 853–863 (2019)
- American Mathematical Society, Providence, Rhode Island (2015)
- Patel, A.: Generalized persistence diagrams. Journal of Applied and Computational Topology 1(3), 397–419 (2018)
- Preprint arXiv:2307.01040
- Perea, J.A.: Multiscale projective coordinates via persistent cohomology of sparse filtrations. Discrete & Computational Geometry 59(1), 175–225 (2018)
- Perea, J.A.: Sparse circular coordinates via principal ℤℤ\mathbb{Z}blackboard_Z-bundles. In: N.A. Baas, G.E. Carlsson, G. Quick, M. Szymik, M. Thaule (eds.) Topological Data Analysis, Abel Symposia, pp. 435–458. Springer International Publishing, Cham (2020)
- International Journal of Computer Vision 107(1), 75–97 (2014)
- Medical Image Analysis 55, 1–14 (2019)
- Cambridge University Press, Cambridge (2019)
- Robins, V.: Computational topology at multiple resolutions: Foundations and applications to fractals and dynamics. Ph.D. Thesis, University of Colorado at Boulder, USA (2000)
- Robinson, M.: Topological Signal Processing. Mathematical Engineering. Springer, Berlin, Heidelberg (2014)
- Schenck, H.: Algebraic Foundations for Applied Topology and Data Analysis. Springer International Publisher, Cham, Switzerland (2022)
- In: E.W. Chambers, J. Gudmundsson (eds.) 39th International Symposium on Computational Geometry (SoCG 2023), Leibniz International Proceedings in Informatics (LIPIcs), vol. 258, pp. 57:1–57:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023)
- Journal of Computational Neuroscience 44(1), 115–145 (2018)
- Skraba, P.: (2024). Personal correspondence; to be released on arXiv in 2024
- Journal of Physics: Complexity 2(3), 035006 (2021)
- Discrete & Computational Geometry 33(2), 249–274 (2005)