Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Contextualized Policy Recovery: Modeling and Interpreting Medical Decisions with Adaptive Imitation Learning (2310.07918v4)

Published 11 Oct 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Interpretable policy learning seeks to estimate intelligible decision policies from observed actions; however, existing models force a tradeoff between accuracy and interpretability, limiting data-driven interpretations of human decision-making processes. Fundamentally, existing approaches are burdened by this tradeoff because they represent the underlying decision process as a universal policy, when in fact human decisions are dynamic and can change drastically under different contexts. Thus, we develop Contextualized Policy Recovery (CPR), which re-frames the problem of modeling complex decision processes as a multi-task learning problem, where each context poses a unique task and complex decision policies can be constructed piece-wise from many simple context-specific policies. CPR models each context-specific policy as a linear map, and generates new policy models $\textit{on-demand}$ as contexts are updated with new observations. We provide two flavors of the CPR framework: one focusing on exact local interpretability, and one retaining full global interpretability. We assess CPR through studies on simulated and real data, achieving state-of-the-art performance on predicting antibiotic prescription in intensive care units ($+22\%$ AUROC vs. previous SOTA) and predicting MRI prescription for Alzheimer's patients ($+7.7\%$ AUROC vs. previous SOTA). With this improvement, CPR closes the accuracy gap between interpretable and black-box methods, allowing high-resolution exploration and analysis of context-specific decision models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: