Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Energy-Aware Routing Algorithm for Mobile Ground-to-Air Charging (2310.07729v3)

Published 30 Sep 2023 in cs.RO, cs.SY, and eess.SY

Abstract: We investigate the problem of energy-constrained planning for a cooperative system of an Unmanned Ground Vehicles (UGV) and an Unmanned Aerial Vehicle (UAV). In scenarios where the UGV serves as a mobile base to ferry the UAV and as a charging station to recharge the UAV, we formulate a novel energy-constrained routing problem. To tackle this problem, we design an energy-aware routing algorithm, aiming to minimize the overall mission duration under the energy limitations of both vehicles. The algorithm first solves a Traveling Salesman Problem (TSP) to generate a guided tour. Then, it employs the Monte-Carlo Tree Search (MCTS) algorithm to refine the tour and generate paths for the two vehicles. We evaluate the performance of our algorithm through extensive simulations and a proof-of-concept experiment. The results show that our algorithm consistently achieves near-optimal mission time and maintains fast running time across a wide range of problem instances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. D. Kingston, R. Beard, and R. Holt, “Decentralized perimeter surveillance using a team of uavs,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1394–1404, Dec 2008.
  2. N. Mathew, S. L. Smith, and S. L. Waslander, “Planning paths for package delivery in heterogeneous multirobot teams,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1298–1308, 2015.
  3. M. Burri, J. Nikolic, C. Hürzeler, J. Rehder, and R. Siegwart, “Aerial service robots for visual inspection of thermal power plant boiler systems,” in Proc. 2nd Int. Conf. Appl. Robot. Power Ind., 2012, pp. 70–75.
  4. J. A. D. E. Corrales, Y. Madrigal, D. Pieri, G. Bland, T. Miles, and M. Fladeland, “Volcano monitoring with small unmanned aerial systems,” in Amer. Inst. Aeronautics Astronautics Infotech Aerosp. Conf., Garden Grove, CA, USA, 2012.
  5. A. Ribeiro and J. Conesa-Muñoz, “Multi-robot systems for precision agriculture,” Innovation in Agricultural Robotics for Precision Agriculture: A Roadmap for Integrating Robots in Precision Agriculture, pp. 151–175, 2021.
  6. D. Lee, J. Zhou, and W. T. Lin, “Autonomous battery swapping system for quadcopter,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 118–124.
  7. D. Palossi, M. Furci, R. Naldi, A. Marongiu, L. Marconi, and L. Benini, “An energy-efficient parallel algorithm for real-time near-optimal uav path planning,” in Proceedings of the ACM International Conference on Computing Frontiers, 2016, pp. 392–397.
  8. M. Chodnicki, B. Siemiatkowska, W. Stecz, and S. Stepień, “Energy efficient uav flight control method in an environment with obstacles and gusts of wind,” Energies, vol. 15, no. 10, p. 3730, 2022.
  9. A. Bin Junaid, A. Konoiko, Y. Zweiri, M. N. Sahinkaya, and L. Seneviratne, “Autonomous wireless self-charging for multi-rotor unmanned aerial vehicles,” energies, vol. 10, no. 6, p. 803, 2017.
  10. N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot rendezvous planning for recharging in persistent tasks,” IEEE Transactions on Robotics, vol. 31, no. 1, pp. 128–142, 2015.
  11. K. Yu, A. K. Budhiraja, S. Buebel, and P. Tokekar, “Algorithms and experiments on routing of unmanned aerial vehicles with mobile recharging stations,” Journal of Field Robotics, vol. 36, no. 3, pp. 602–616, 2019.
  12. X. Lin, Y. Yazıcıoğlu, and D. Aksaray, “Robust planning for persistent surveillance with energy-constrained uavs and mobile charging stations,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4157–4164, 2022.
  13. M. Jünger, G. Reinelt, and G. Rinaldi, “The traveling salesman problem,” Handbooks in operations research and management science, vol. 7, pp. 225–330, 1995.
  14. T. Dam, G. Chalvatzaki, J. Peters, and J. Pajarinen, “Monte-carlo robot path planning,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 213–11 220, 2022.
  15. L. Perron and V. Furnon. Or-tools. Google. [Online]. Available: https://developers.google.com/optimization/
  16. B. Kartal, E. Nunes, J. Godoy, and M. Gini, “Monte carlo tree search for multi-robot task allocation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.
  17. C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree search methods,” IEEE Transactions on Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com