Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parametric Leaky Tanh: A New Hybrid Activation Function for Deep Learning (2310.07720v1)

Published 11 Aug 2023 in cs.LG and cs.NE

Abstract: Activation functions (AFs) are crucial components of deep neural networks (DNNs), having a significant impact on their performance. An activation function in a DNN is typically a smooth, nonlinear function that transforms an input signal into an output signal for the subsequent layer. In this paper, we propose the Parametric Leaky Tanh (PLTanh), a novel hybrid activation function designed to combine the strengths of both the Tanh and Leaky ReLU (LReLU) activation functions. PLTanh is differentiable at all points and addresses the 'dying ReLU' problem by ensuring a non-zero gradient for negative inputs, consistent with the behavior of LReLU. By integrating the unique advantages of these two diverse activation functions, PLTanh facilitates the learning of more intricate nonlinear relationships within the network. This paper presents an empirical evaluation of PLTanh against established activation functions, namely ReLU, LReLU, and ALReLU utilizing five diverse datasets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.