Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Algorithmic study on liar's vertex-edge domination problem (2310.07465v2)

Published 11 Oct 2023 in cs.DS and math.CO

Abstract: Let $G=(V,E)$ be a graph. For an edge $e=xy\in E$, the closed neighbourhood of $e$, denoted by $N_G[e]$ or $N_G[xy]$, is the set $N_G[x]\cup N_G[y]$. A vertex set $L\subseteq V$ is liar's vertex-edge dominating set of a graph $G=(V,E)$ if for every $e_i\in E$, $|N_G[e_i]\cap L|\geq 2$ and for every pair of distinct edges $e_i$ and $e_j$, $|(N_G[e_i]\cup N_G[e_j])\cap L|\geq 3$. This paper introduces the notion of liar's vertex-edge domination which arises naturally from some applications in communication networks. Given a graph $G$, the \textsc{Minimum Liar's Vertex-Edge Domination Problem} (\textsc{MinLVEDP}) asks to find a liar's vertex-edge dominating set of $G$ of minimum cardinality. In this paper, we study this problem from algorithmic point of view. We show that \textsc{MinLVEDP} can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for chordal graphs, bipartite graphs, and $p$-claw free graphs for $p\geq 4$. We further study approximation algorithms for this problem. We propose two approximation algorithms for \textsc{MinLVEDP} in general graphs and $p$-claw free graphs. %We propose an $O(\ln \Delta(G))$-approximation algorithm for \textsc{MinLVEDP} in general graphs, where $\Delta(G)$ is the maximum degree of the input graph. Also, we design a constant factor approximation algorithm for $p$-claw free graphs. On the negative side, we show that the \textsc{MinLVEDP} cannot be approximated within $\frac{1}{2}(\frac{1}{8}-\epsilon)\ln|V|$ for any $\epsilon >0$, unless $NP\subseteq DTIME(|V|{O(\log(\log|V|)})$. Finally, we prove that the \textsc{MinLVEDP} is APX-complete for bounded degree graphs and $p$-claw free graphs for $p\geq 6$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube